Spinn Code
Loading Please Wait
  • Home
  • My Profile

Share something

Explore Qt Development Topics

  • Installation and Setup
  • Core GUI Components
  • Qt Quick and QML
  • Event Handling and Signals/Slots
  • Model-View-Controller (MVC) Architecture
  • File Handling and Data Persistence
  • Multimedia and Graphics
  • Threading and Concurrency
  • Networking
  • Database and Data Management
  • Design Patterns and Architecture
  • Packaging and Deployment
  • Cross-Platform Development
  • Custom Widgets and Components
  • Qt for Mobile Development
  • Integrating Third-Party Libraries
  • Animation and Modern App Design
  • Localization and Internationalization
  • Testing and Debugging
  • Integration with Web Technologies
  • Advanced Topics

About Developer

Khamisi Kibet

Khamisi Kibet

Software Developer

I am a computer scientist, software developer, and YouTuber, as well as the developer of this website, spinncode.com. I create content to help others learn and grow in the field of software development.

If you enjoy my work, please consider supporting me on platforms like Patreon or subscribing to my YouTube channel. I am also open to job opportunities and collaborations in software development. Let's build something amazing together!

  • Email

    infor@spinncode.com
  • Location

    Nairobi, Kenya
cover picture
profile picture Bot SpinnCode

7 Months ago | 47 views

**Custom Music Visualization with Qt and PySide6** In this article, we'll explore how to create a custom music visualization application using Qt and PySide6. The application will utilize the FFT algorithm to analyze the audio signal and display a real-time visualization. **Prerequisites** * Python 3.8+ * PySide6 * Qt 6 * NumPy * PyAudio **Installation** ```bash pip install PySide6 numpy pyaudio ``` **Music Visualization Application** Our application will consist of two main components: the audio analyzer and the visualization widget. ### Audio Analyzer The audio analyzer will utilize the PyAudio library to capture the audio signal and the NumPy library to perform the FFT analysis. ```python import numpy as np import pyaudio class AudioAnalyzer: def __init__(self): self.p = pyaudio.PyAudio() self.stream = self.p.open(format=pyaudio.paInt16, channels=2, rate=44100, input=True, frames_per_buffer=1024) def get_audio_data(self): audio_data = np.frombuffer(self.stream.read(1024), dtype=np.int16) fft_data = np.fft.fft(audio_data) return np.abs(fft_data) def close(self): self.stream.stop_stream() self.stream.close() self.p.terminate() ``` ### Visualization Widget The visualization widget will utilize the Qt for Python library to display the real-time visualization. ```python from PySide6.QtWidgets import QWidget, QApplication from PySide6.QtGui import QPainter, QPen, QBrush from PySide6.QtCore import Qt, QTimer class VisualizationWidget(QWidget): def __init__(self): super().__init__() self.audio_analyzer = AudioAnalyzer() self.fft_data = np.zeros(1024) self.timer = QTimer() self.timer.timeout.connect(self.update) self.timer.start(16) # 60 FPS def paintEvent(self, event): painter = QPainter(self) painter.setRenderHint(QPainter.Antialiasing) # Draw the visualization painter.setPen(QPen(Qt.NoPen)) painter.setBrush(QBrush(Qt.blue)) for i in range(len(self.fft_data)): painter.drawRect(i * 2, 200 - int(self.fft_data[i] * 100), 2, int(self.fft_data[i] * 100)) def update(self): self.fft_data = self.audio_analyzer.get_audio_data() self.update() def closeEvent(self, event): self.timer.stop() self.audio_analyzer.close() event.accept() if __name__ == "__main__": app = QApplication() widget = VisualizationWidget() widget.resize(800, 400) widget.show() app.exec() ``` **Result** The application will display a real-time visualization of the audio signal. **External Links** * [PyAudio](https://people.csail.mit.edu/hubert/pyaudio/) * [NumPy](https://numpy.org/) * [Qt for Python](https://www.qt.io/qt-for-python) **Comment** Please leave a comment below if you have any questions or need further clarification on any of the steps.
Daily Tip

Custom Music Visualization with Qt and PySide6

**Custom Music Visualization with Qt and PySide6** In this article, we'll explore how to create a custom music visualization application using Qt and PySide6. The application will utilize the FFT algorithm to analyze the audio signal and display a real-time visualization. **Prerequisites** * Python 3.8+ * PySide6 * Qt 6 * NumPy * PyAudio **Installation** ```bash pip install PySide6 numpy pyaudio ``` **Music Visualization Application** Our application will consist of two main components: the audio analyzer and the visualization widget. ### Audio Analyzer The audio analyzer will utilize the PyAudio library to capture the audio signal and the NumPy library to perform the FFT analysis. ```python import numpy as np import pyaudio class AudioAnalyzer: def __init__(self): self.p = pyaudio.PyAudio() self.stream = self.p.open(format=pyaudio.paInt16, channels=2, rate=44100, input=True, frames_per_buffer=1024) def get_audio_data(self): audio_data = np.frombuffer(self.stream.read(1024), dtype=np.int16) fft_data = np.fft.fft(audio_data) return np.abs(fft_data) def close(self): self.stream.stop_stream() self.stream.close() self.p.terminate() ``` ### Visualization Widget The visualization widget will utilize the Qt for Python library to display the real-time visualization. ```python from PySide6.QtWidgets import QWidget, QApplication from PySide6.QtGui import QPainter, QPen, QBrush from PySide6.QtCore import Qt, QTimer class VisualizationWidget(QWidget): def __init__(self): super().__init__() self.audio_analyzer = AudioAnalyzer() self.fft_data = np.zeros(1024) self.timer = QTimer() self.timer.timeout.connect(self.update) self.timer.start(16) # 60 FPS def paintEvent(self, event): painter = QPainter(self) painter.setRenderHint(QPainter.Antialiasing) # Draw the visualization painter.setPen(QPen(Qt.NoPen)) painter.setBrush(QBrush(Qt.blue)) for i in range(len(self.fft_data)): painter.drawRect(i * 2, 200 - int(self.fft_data[i] * 100), 2, int(self.fft_data[i] * 100)) def update(self): self.fft_data = self.audio_analyzer.get_audio_data() self.update() def closeEvent(self, event): self.timer.stop() self.audio_analyzer.close() event.accept() if __name__ == "__main__": app = QApplication() widget = VisualizationWidget() widget.resize(800, 400) widget.show() app.exec() ``` **Result** The application will display a real-time visualization of the audio signal. **External Links** * [PyAudio](https://people.csail.mit.edu/hubert/pyaudio/) * [NumPy](https://numpy.org/) * [Qt for Python](https://www.qt.io/qt-for-python) **Comment** Please leave a comment below if you have any questions or need further clarification on any of the steps.

Images

More from Bot

Scrum Framework Roles
7 Months ago 48 views
Working with Databases and SQL Queries in R
7 Months ago 138 views
Error Handling in Asynchronous TypeScript Code
7 Months ago 63 views
Setting Up a Development Environment for Modern CSS
7 Months ago 59 views
Mastering Dart: From Fundamentals to Flutter Development
6 Months ago 40 views
Solving Linear Systems of Equations using Matrix Methods in MATLAB
7 Months ago 62 views
Spinn Code Team
About | Home
Contact: info@spinncode.com
Terms and Conditions | Privacy Policy | Accessibility
Help Center | FAQs | Support

© 2025 Spinn Company™. All rights reserved.
image